Cumulative Burden of Morbidity Among Testicular Cancer Survivors After Standard Cisplatin-Based Chemotherapy: A Multi-Institutional Study

ABSTRACT

Purpose
In this multicenter study, we evaluated the cumulative burden of morbidity (CBM) among > 1,200 testicular cancer survivors and applied factor analysis to determine the co-occurrence of adverse health outcomes (AHOs).

Patients and Methods
Participants were ≤ 55 years of age at diagnosis, finished first-line chemotherapy ≥ 1 year previously, completed a comprehensive questionnaire, and underwent physical examination. Treatment data were abstracted from medical records. A CBM score encompassed the number and severity of AHOs, with ordinal logistic regression used to assess associations with exposures. Nonlinear factor analysis and the nonparametric dimensionality evaluation to enumerate contributing traits procedure determined which AHOs co-occurred.

Results
Among 1,214 participants, approximately 20% had a high (15%) or very high/severe (4.1%) CBM score, whereas approximately 80% scored medium (30%) or low/very low (47%). Increased risks of higher scores were associated with four cycles of either ifosfamide, etoposide, and cisplatin (odds ratio [OR], 1.96; 95% CI, 1.04 to 3.71) or bleomycin, etoposide, and cisplatin (OR, 1.44; 95% CI, 1.04 to 1.98), older attained age (OR, 1.18; 95% CI, 1.10 to 1.26), current disability leave (OR, 3.53; 95% CI, 1.57 to 7.95), less than a college education (OR, 1.44; 95% CI, 1.11 to 1.87), and current or former smoking (OR, 1.28; 95% CI, 1.02 to 1.63). CBM score did not differ after either chemotherapy regimen (P = .36). Asian race (OR, 0.41; 95% CI, 0.23 to 0.72) and vigorous exercise (OR, 0.68; 95% CI, 0.52 to 0.89) were protective. Variable clustering analyses identified six significant AHO clusters (χ² P < .001): hearing loss/damage, tinnitus (OR, 16.3); hyperlipidemia, hypertension, diabetes (OR, 9.8); neuropathy, pain, Raynaud phenomenon (OR, 5.5); cardiovascular and related conditions (OR, 5.0); thyroid disease, erectile dysfunction (OR, 4.2); and depression/anxiety, hypogonadism (OR, 2.8).

Conclusion
Factors associated with higher CBM may identify testicular cancer survivors in need of closer monitoring. If confirmed, identified AHO clusters could guide the development of survivorship care strategies.

INTRODUCTION

The number of cancer survivors has increased markedly in recent decades, with an estimated 18 million in the United States by 2022. Given these increasing numbers, having an understanding and quantifying the late effects of cancer and its treatment to inform survivorship care strategies are important. An important population in which to assess adverse health outcomes (AHOs) are survivors of testicular cancer, the most common cancer in men ages 18 to 39 years. Since effective cisplatin-based chemotherapy was introduced in the 1970s, the overall age-adjusted 5-year relative survival rate is > 95%, and survivors remain at risk for decades for the late effects of cancer and its treatment. Characterization of AHOs is
facilitated by the homogeneity of treatment regimens. For four decades, therapy for advanced testicular cancer typically has consisted of platinum-based chemotherapy. For good-risk disease, standard treatment comprises either three cycles of bleomycin, etoposide, and cisplatin (BEP × 3) or four cycles of etoposide plus cisplatin (EP × 4), whereas for intermediate- or poor-risk testicular cancer, four cycles of BEP (BEP × 4) or four cycles of etoposide, ifosfamide, and cisplatin (VIP × 4) are administered.16 Although treatment of good-risk testicular cancer with BEP × 3 versus EP × 4 results in lower cisplatin exposure, it is accompanied by potential bleomycin adverse effects.7 To our knowledge, no study has evaluated the cumulative burden of morbidity (CBM) after BEP × 4 versus VIP × 4 or after BEP × 3 versus EP × 4 and has taken into account both the number and the severity of AHOs. Such characterization is important to develop risk-stratified, evidence-based follow-up recommendations. Moreover, as noted previously,8 a better understanding of AHOs may help to guide testicular cancer management, especially in the controversial area of whether good-risk patients should receive EP × 4 or BEP × 3.

To provide new information about CBM after contemporary cisplatin-based chemotherapy for testicular cancer, we examined both the number and the severity of AHOs among 1,214 testicular cancer survivors enrolled in the Platinum Study, a large, multicenter clinical investigation.9 We evaluated the co-aggregation of AHOs to identify co-occurring clusters and identified clinical, sociodemographic, and behavioral factors associated with an elevated CBM.

PATIENTS AND METHODS

Study Population

The Platinum Study was approved by each participating institution’s institutional review board, and all participants provided written informed consent. The cohort was described in detail previously.2,10 Briefly, eligible testicular cancer survivors had a histologic/serologic diagnosis of germ cell tumor, were age ≤ 55 years at diagnosis, completed first-line cisplatin-based chemotherapy ≥ 1 year previously, and were undergoing routine follow-up at the participating site. All participants are referred to as testicular cancer survivors. At study enrollment, participants reported current prescription medication use with indication, underwent a brief physical examination, and completed comprehensive health questionnaires. Cancer diagnosis and treatment data were abstracted from medical records (Appendix, online only). Testicular cancer survivors indicated the average time per week of participating in various physical activities during the past year.11,12 These activities were grouped into vigorous (≥ 6 metabolic equivalent tasks) and nonvigorous (< 6 metabolic equivalent tasks) activities (Appendix).13

Measurement of AHOs

Participant responses were mapped to individual AHOs and graded according to severity on a 0 to 4-point scale using a modified version of the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03)14 as in prior studies.13,15 A multidisciplinary panel of experts agreed on all grades (C.E., H.D.S., D.M.S., S.D.F., L.H.E., and L.B.T.). Appendix Table A1 (online only) lists individual AHOs and grading criteria.15,16 If no response was provided (< 1%), the AHO was conservatively treated as no symptom/diagnosis. CBM score was calculated on the basis of the number and severity of AHOs by following methods adapted from Geenen et al15 (Appendix Table A2, online only). A secondary CBM score, CBMp, was calculated using AHOs previously related to cisplatin exposure (ie, peripheral sensory neuropathy, autonomic neuropathy, hearing damage, tinnitus, kidney disease).17,18

Statistical Analysis

Discrete and continuous data were described using numbers (percentages) and medians (ranges), respectively. Sociodemographic, health behavior, and treatment variables were individually tested for association with CBM score using 7 (continuous variables) or Pearson’s χ² (categorical variables) test. Variables then were combined in a multivariable ordinal logistic regression model, with CBM score as the dependent variable. Unless otherwise noted, variables with Wald χ² P value ≥ .1 in the full model were removed from the final model. In the latter, the very high and severe CBM categories were collapsed given sparse data. Multivariable models that investigated the effect of cumulative cisplatin dose on CBM score included the same covariates as the main model, except that chemotherapy regimen was omitted given its strong correlation with cumulative cisplatin dose.

Ordinal logistic regression examined the relationship between CBM score and self-reported health (the dependent variable). For all ordinal logistic regression models, the assumption of proportionality of odds across response categories was confirmed by comparing the Bayesian information criterion for the proportional odds model to that from a partial proportional odds model. Stata 14.1 software (StataCorp; College Station, TX) was used for all descriptive statistics and regression analyses.

Cluster analysis of variables was performed with nonlinear factor analysis and the nonparametric conditional item-pair covariance method of the cross-validated dimensionality evaluation to enumerate contributing traits procedure (Appendix). Each AHO was dichotomized: grades 0 and 1 were combined, and grades 2, 3, and 4 were combined. Because of sparse numbers, transient ischemic attack and stroke were collapsed into a single AHO; hypertygliceridemia and hypercholesterolemia were combined into hyperlipidemia. Average item-pair odds ratios (ORs) were calculated by averaging the log OR across AHO pairs and then by exponentiating the average value.

RESULTS

Median age at evaluation for 1,214 testicular cancer survivors was 37 years (range, 18 to 74 years), and median time since chemotherapy completion was 4.2 years (range, 1 to 30 years; Table 1). Of all participants, 1,157 (95.3%) were seen in the clinic during routine follow-up care, and approximately 90% completed chemotherapy within 15 years of enrollment. Most participants (1,035 [85.3%]) received BEP × 3 (460 [37.9%]), BEP × 4 (222 [18.3%]), or EP × 4 (353 [29.1%]); 44 received VIP, typically four cycles (n = 32). Median cumulative cisplatin dose was 400 mg/m², with approximately one third receiving 300 mg/m² (447 [36.8%]). Retinoperitoneal lymph node dissection was performed in 46.3% of participants. Most survivors were white (85.3%), married/living as married (61.0%), employed (88.7%), and educated beyond high school (88.3%).

The most prevalent AHOs of any severity were obesity (41.7% grade 2, 26.0% grade 3, 3.9% grade 4), sensory neuropathy (28.3% grade 1, 14.5% grade 2, 13.4% grade 3), tinnitus (25.0% grade 1, 7.1% grade 2, 7.5% grade 3), and hearing damage (24.5% grade 1, 13.5% grade 2, 1.2% grade 3; Table 2). Raynaud phenomenon occurred in approximately 33% of participants (15.6% grade 1, 8.7% grade 2, 9.1% grade 3) and pain in approximately 25% (13.6% grade 1, 9.8% grade 2, 1.5% grade 3). Hypogonadism (10.2% grade 2) and erectile dysfunction (15.9% grade 1, 12.5% grade 2) also were observed.
Table 1. Clinical, Sociodemographic, and Health Behavior Characteristics of 1,214 Survivors of Cisplatin-Treated Germ Cell Tumors

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis, years<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>30 (15-60)</td>
</tr>
<tr>
<td>< 20</td>
<td>89 (7.3)</td>
</tr>
<tr>
<td>20-29</td>
<td>482 (39.7)</td>
</tr>
<tr>
<td>30-39</td>
<td>403 (33.2)</td>
</tr>
<tr>
<td>≥40</td>
<td>232 (19.2)</td>
</tr>
<tr>
<td>Age at evaluation, years</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>37 (18-74)</td>
</tr>
<tr>
<td>< 20</td>
<td>9 (0.7)</td>
</tr>
<tr>
<td>20-29</td>
<td>265 (21.8)</td>
</tr>
<tr>
<td>30-39</td>
<td>436 (35.9)</td>
</tr>
<tr>
<td>40-49</td>
<td>314 (25.9)</td>
</tr>
<tr>
<td>50-59</td>
<td>164 (13.5)</td>
</tr>
<tr>
<td>60-69</td>
<td>26 (2.1)</td>
</tr>
<tr>
<td>Calendar year of diagnosis<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Before 2000</td>
<td>146 (12.0)</td>
</tr>
<tr>
<td>2000-2004</td>
<td>145 (11.9)</td>
</tr>
<tr>
<td>2005-2009</td>
<td>317 (26.1)</td>
</tr>
<tr>
<td>2010-2016</td>
<td>598 (49.3)</td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>310 (25.5)</td>
</tr>
<tr>
<td>Nonseminoma</td>
<td>885 (72.9)</td>
</tr>
<tr>
<td>Not otherwise specified</td>
<td>19 (1.6)</td>
</tr>
<tr>
<td>Tumor site<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>1,069 (88.1)</td>
</tr>
<tr>
<td>Extragonadal</td>
<td>135 (11.1)</td>
</tr>
<tr>
<td>Type of cisplatin-based chemotherapy<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>BEP, cycles</td>
<td>481 (58.5)</td>
</tr>
<tr>
<td>≤2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>4</td>
<td>222</td>
</tr>
<tr>
<td>≥5</td>
<td>7</td>
</tr>
<tr>
<td>EP, cycles</td>
<td>389 (32.0)</td>
</tr>
<tr>
<td>≤3</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>353</td>
</tr>
<tr>
<td>≥5</td>
<td>12</td>
</tr>
<tr>
<td>VIP, cycles</td>
<td>44 (3.8)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>≥5</td>
<td>8</td>
</tr>
<tr>
<td>Other<sup>e</sup>, cycles</td>
<td>69 (5.7)</td>
</tr>
<tr>
<td>≤2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>≥5</td>
<td>9</td>
</tr>
<tr>
<td>Cumulative dose of cisplatin, mg/m²<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>400 (100-828)</td>
</tr>
<tr>
<td>< 300</td>
<td>61 (4.9)</td>
</tr>
<tr>
<td>300</td>
<td>447 (36.8)</td>
</tr>
<tr>
<td>301-399</td>
<td>44 (3.2)</td>
</tr>
<tr>
<td>400</td>
<td>589 (48.5)</td>
</tr>
<tr>
<td>> 400</td>
<td>55 (4.4)</td>
</tr>
<tr>
<td>Retroperitoneal lymph node dissection<sup>g</sup></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>562 (46.3)</td>
</tr>
<tr>
<td>No</td>
<td>659 (52.6)</td>
</tr>
<tr>
<td>Time since completion of chemotherapy, years<sup>h</sup></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>4.2 (1-30)</td>
</tr>
<tr>
<td>< 2</td>
<td>329 (27.1)</td>
</tr>
<tr>
<td>2-5</td>
<td>423 (34.8)</td>
</tr>
<tr>
<td>6-9</td>
<td>186 (15.3)</td>
</tr>
<tr>
<td>≥10</td>
<td>261 (21.5)</td>
</tr>
</tbody>
</table>

Table 1. Clinical, Sociodemographic, and Health Behavior Characteristics of 1,214 Survivors of Cisplatin-Treated Germ Cell Tumors (continued)

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race<sup>i</sup></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1,036 (85.3)</td>
</tr>
<tr>
<td>African American</td>
<td>16 (1.3)</td>
</tr>
</tbody>
</table>

Abbreviations: BEP, bleomycin, etoposide, and cisplatin; EP, etoposide and cisplatin, MET, metabolic equivalent task; VIP, etoposide, ifosfamide, and cisplatin.

^aAge at diagnosis was not available for eight participants.

^bYear of diagnosis was not available for eight participants.

^cTumor site was not available for 10 participants.

^dOf the 52 participants treated with VIP × 4, 44% had mediastinal disease, whereas 47% had disease confined to the testis; in the remainder (9%), other extragonadal sites were involved. This contrasts with the smaller percentage of participants with mediastinal disease (ie, ≤ 7.2%) in the other treatment groups.

^eOther chemotherapy regimens were cisplatin and ifosfamide (n = 25); cisplatin, vinblastine, and bleomycin (n = 6); ifosfamide, bleomycin, cisplatin, and etoposide (n = 6); and other cisplatin-based regimens (n = 32). The number of cycles was not available for four participants who received a chemotherapy regimen designated as other.

^fCumulative dose of cisplatin was not available for 18 participants.

^gRetroperitoneal lymph node dissection status was not available for 13 participants.

^hTime since completion of chemotherapy was not available for 15 participants.

ⁱRace was not stated for 19 participants.

^jMarital status was not stated for 15 participants.

^kEducation status was not stated for three participants.

^lEmployment status was not stated for 18 participants.

^mSmoking status was not stated for one participant.

ⁿAlcohol consumption was not stated for eight participants.

^oExercise was assessed in this study with a validated questionnaire^{11,12} that asks participants to report their average time per week (over the past year) spent at each of nine recreational activities: walking or hiking (including walking to work); jogging (> 10 min/mile); running (≤ 10 min/mile); bicycling (including stationary bike); aerobic exercise/dance or exercise machines; lower-intensity exercise, yoga, stretching, or toning; tennis, squash, or racquetball; lap swimming; and weight lifting or strength training. Each physical activity was assigned a MET value, which is a commonly used metric for describing the relative energy expenditure of a specific type of physical activity (1 MET = 1 kcal/kg/h or the energy cost of sitting quietly). The MET values for each activity were then used to calculate MET-h/wk for each participant, and these were then grouped into categories of vigorous or nonvigorous physical activity according to standard definitions¹³. Physical activity was not stated for one participant.
Figure 1 shows the CBM scores. Approximately 20% of participants had a high (180 [14.8%]), very high (46 [3.8%]), or severe (one [0.1%]) score, whereas 76% had a very low (104 [8.6%]), low (458 [37.7%]), or medium (360 [29.7%]) score. Only 5.4% of participants had no AHOs. All 47 with a very high or severe CBM score had grade 4 obesity.

Bivariable associations of clinical, sociodemographic, and health behavior factors with CBM score are shown in Appendix Table A3 (online only). In a multivariable model (Table 3) that controlled for time since chemotherapy and enrollment center, the following were significantly associated with higher CBM score: older attained age (OR, 1.18 per 5 years), BEP \times 4 (OR, 1.44 v BEP \times 3), VIP \times 4 (OR, 1.96 v BEP \times 3), less than a college-level education (OR, 1.44), current disability leave (OR, 3.53), and former or current smoking status (OR, 1.28). Although the OR for VIP \times 4 was slightly higher than that for BEP \times 4, the difference was not significant (P = .36). Disease stage was not associated with CBM score (P = .48), which suggests that increased scores after BEP \times 4 or VIP \times 4 were not explained by more-advanced tumor status. CBM scores after EP \times 4 and BEP \times 3 were similar (P = .65). No significant differences were observed for individual AHOs except Raynaud phenomenon (P < .001), for which prevalence and severity after BEP \times 3 (183 [39.8%]: 18.5% grade 1, 10.4% grade 2, 10.9% grade 3) exceeded EP \times 4 (84 [23.8%]: 12.2% grade 1, 16.8% grade 2, 4.8% grade 3).

Asian race (OR, 0.41) and vigorous exercise (OR, 0.68) were inversely associated with higher CBM score. Lower risk in Asian testicular cancer survivors reflects that fewer participants had higher severity grades for 15 of 22 AHOs versus white survivors (eg, peripheral sensory neuropathy: 8.5% v 13.5% grade 3; hearing loss: 8.5% v 14.1% grade 2, 0% v 1.2% grade 3). Similar trends were observed for autonomic neuropathy, tinnitus, Raynaud phenomenon, pain, kidney disease, hypertension, coronary artery disease, peripheral artery disease, obesity, thyroid disease, depression/anxiety, erectile dysfunction, and hypogonadism.

The relationship between cumulative cisplatin dose and overall CBM score was of borderline significance (OR per 100 mg/m2, 1.28). Although the OR for VIP \times 4 was slightly higher than that for BEP \times 4, the difference was not significant (P = .36). Disease stage was not associated with CBM score (P = .48), which suggests that increased scores after BEP \times 4 or VIP \times 4 were not explained by more-advanced tumor status. CBM scores after EP \times 4 and BEP \times 3 were similar (P = .65). No significant differences were observed for individual AHOs except Raynaud phenomenon (P < .001), for which prevalence and severity after BEP \times 3 (183 [39.8%]: 18.5% grade 1, 10.4% grade 2, 10.9% grade 3) exceeded EP \times 4 (84 [23.8%]: 12.2% grade 1, 16.8% grade 2, 4.8% grade 3).

Asian race (OR, 0.41) and vigorous exercise (OR, 0.68) were inversely associated with higher CBM score. Lower risk in Asian testicular cancer survivors reflects that fewer participants had higher severity grades for 15 of 22 AHOs versus white survivors (eg, peripheral sensory neuropathy: 8.5% v 13.5% grade 3; hearing loss: 8.5% v 14.1% grade 2, 0% v 1.2% grade 3). Similar trends were observed for autonomic neuropathy, tinnitus, Raynaud phenomenon, pain, kidney disease, hypertension, coronary artery disease, peripheral artery disease, obesity, thyroid disease, depression/anxiety, erectile dysfunction, and hypogonadism.

The relationship between cumulative cisplatin dose and overall CBM score was of borderline significance (OR per 100 mg/m2, 1.28). Although the OR for VIP \times 4 was slightly higher than that for BEP \times 4, the difference was not significant (P = .36). Disease stage was not associated with CBM score (P = .48), which suggests that increased scores after BEP \times 4 or VIP \times 4 were not explained by more-advanced tumor status. CBM scores after EP \times 4 and BEP \times 3 were similar (P = .65). No significant differences were observed for individual AHOs except Raynaud phenomenon (P < .001), for which prevalence and severity after BEP \times 3 (183 [39.8%]: 18.5% grade 1, 10.4% grade 2, 10.9% grade 3) exceeded EP \times 4 (84 [23.8%]: 12.2% grade 1, 16.8% grade 2, 4.8% grade 3).

Asian race (OR, 0.41) and vigorous exercise (OR, 0.68) were inversely associated with higher CBM score. Lower risk in Asian testicular cancer survivors reflects that fewer participants had higher severity grades for 15 of 22 AHOs versus white survivors (eg, peripheral sensory neuropathy: 8.5% v 13.5% grade 3; hearing loss: 8.5% v 14.1% grade 2, 0% v 1.2% grade 3). Similar trends were observed for autonomic neuropathy, tinnitus, Raynaud phenomenon, pain, kidney disease, hypertension, coronary artery disease, peripheral artery disease, obesity, thyroid disease, depression/anxiety, erectile dysfunction, and hypogonadism.

The relationship between cumulative cisplatin dose and overall CBM score was of borderline significance (OR per 100 mg/m2, 1.28). Although the OR for VIP \times 4 was slightly higher than that for BEP \times 4, the difference was not significant (P = .36). Disease stage was not associated with CBM score (P = .48), which suggests that increased scores after BEP \times 4 or VIP \times 4 were not explained by more-advanced tumor status. CBM scores after EP \times 4 and BEP \times 3 were similar (P = .65). No significant differences were observed for individual AHOs except Raynaud phenomenon (P < .001), for which prevalence and severity after BEP \times 3 (183 [39.8%]: 18.5% grade 1, 10.4% grade 2, 10.9% grade 3) exceeded EP \times 4 (84 [23.8%]: 12.2% grade 1, 16.8% grade 2, 4.8% grade 3).

Asian race (OR, 0.41) and vigorous exercise (OR, 0.68) were inversely associated with higher CBM score. Lower risk in Asian testicular cancer survivors reflects that fewer participants had higher severity grades for 15 of 22 AHOs versus white survivors (eg, peripheral sensory neuropathy: 8.5% v 13.5% grade 3; hearing loss: 8.5% v 14.1% grade 2, 0% v 1.2% grade 3). Similar trends were observed for autonomic neuropathy, tinnitus, Raynaud phenomenon, pain, kidney disease, hypertension, coronary artery disease, peripheral artery disease, obesity, thyroid disease, depression/anxiety, erectile dysfunction, and hypogonadism.
Cumulative Burden of Morbidity Among Testicular Cancer Survivors

To our knowledge, the results are based on the largest study to date in testicular cancer survivors administered contemporary cisplatin-based chemotherapy. We characterize the CBM by showing that even at a young age, approximately one in five patients has a score of high to severe, with only 5% reporting no AHOs. Although CBM was higher in participants treated with BEP × 4 or VIP × 4 (v BEP × 3), scores did not differ significantly between the two regimens (P = .36). CBM score also did not differ between BEP × 3 and EP × 4, the standard approaches for good-risk disease. The higher prevalence and severity of Raynaud phenomenon after BEP × 3 is consistent with the known relationship with bleomycin, although Raynaud phenomenon may also be related to cisplatin. Increasing cumulative cisplatin dose significantly increased risk for a higher CBM score for AHOs related to neuropathy, ototoxicity, and kidney disease. The strong association between higher CBM score and worse self-reported health indicates that the score reflects a health status perceptible to patients. These and other new findings are discussed next.

Previous US investigations of testicular cancer survivors have been limited in scope, generally by either not addressing AHOs or evaluating fewer than five conditions (Appendix Table A4, online only). Although three studies obtained treatment information from medical records, only Oh et al evaluated AHOs related to neuropathy, ototoxicity, and kidney disease. The strong association between higher CBM score and worse self-reported health indicates that the score reflects a health status perceptible to patients. These and other new findings are discussed next.

DISCUSSION

Table 3. Multivariable Ordinal Logistic Regression of Factors Associated With Cumulative Burden of Morbidity Score

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at evaluation (per 5 years)*</td>
<td>1.18 (1.10 to 1.26)</td>
<td>< .001</td>
</tr>
<tr>
<td>Time since chemotherapy completion, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>2-5</td>
<td>0.91 (0.88 to 1.23)</td>
<td>.540</td>
</tr>
<tr>
<td>6-9</td>
<td>0.61 (0.42 to 0.89)</td>
<td>.010</td>
</tr>
<tr>
<td>≥ 10</td>
<td>0.55 (0.38 to 0.85)</td>
<td>.002</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Black/African-American</td>
<td>1.56 (0.49 to 5.03)</td>
<td>.450</td>
</tr>
<tr>
<td>Asian</td>
<td>0.41 (0.23 to 0.72)</td>
<td>.002</td>
</tr>
<tr>
<td>Other</td>
<td>1.05 (0.63 to 1.76)</td>
<td>.840</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College or postcollege graduate</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Less than college education</td>
<td>1.44 (1.11 to 1.87)</td>
<td>.006</td>
</tr>
<tr>
<td>Current employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.90 (0.55 to 1.47)</td>
<td>.660</td>
</tr>
<tr>
<td>Retired</td>
<td>1.10 (0.36 to 3.39)</td>
<td>.870</td>
</tr>
<tr>
<td>Disability leave</td>
<td>3.53 (1.57 to 7.95)</td>
<td>.002</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Current or former</td>
<td>1.28 (1.02 to 1.63)</td>
<td>.037</td>
</tr>
<tr>
<td>Vigorous physical activity (≥ 6 METs)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Yes</td>
<td>0.68 (0.52 to 0.89)</td>
<td>.004</td>
</tr>
<tr>
<td>Retropertioneal lymph node dissection‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>Yes</td>
<td>0.88 (0.69 to 1.12)</td>
<td>.310</td>
</tr>
<tr>
<td>Type of chemotherapy§ × No. of cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEP × 3</td>
<td>Ref.</td>
<td>—</td>
</tr>
<tr>
<td>EP × 4</td>
<td>1.09 (0.75 to 1.60)</td>
<td>.650</td>
</tr>
<tr>
<td>BEP × 4</td>
<td>1.44 (1.04 to 1.98)</td>
<td>.282</td>
</tr>
<tr>
<td>VIP × 4</td>
<td>1.96 (1.04 to 3.71)</td>
<td>.039</td>
</tr>
</tbody>
</table>

NOTE. ORs and P values are from an adjusted model that includes all other variables listed in the table as well as enrollment center, with cumulative burden of morbidity score as the outcome (dependent) variable. The very high and severe categories were collapsed because of sparse data. Analysis includes 1,013 (83.4%) testicular cancer survivors with nonmissing data for all variables in the model. Boldface indicates significance at P < .05.

Abbreviations: BEP, bleomycin, etoposide, and cisplatin; EP, etoposide plus cisplatin; MET, metabolic equivalent task; OR, odds ratio; Ref., reference; VIP, etoposide, ifosfamide, and cisplatin.

*Age diagnosis was not included in the model given the strong correlation with age at evaluation (r = 0.81), which was included.

†See Table 1 footnote o and the Appendix for details on the assessment of physical activity.

‡Retropertioneal lymph node dissection was retained in the multivariable model to control for potential residual confounding given its correlation with chemotherapy regimen (P < .001); approximately 34%, 55%, 66%, and 44% of testicular cancer survivors treated with BEP × 3, EP × 4, BEP × 4, and VIP × 4, respectively, had a retropertioneal lymph node dissection.

§Disease stage was not significantly associated with cumulative burden of morbidity score (P = .48), which suggests that increased scores after BEP × 4 or VIP × 4 were not explained by a more-advanced tumor status.

1.16; 95% CI, 0.99 to 1.37; P = .064) in the multivariable model. However, when limited to conditions previously attributed to cisplatin, each 100 mg/m² increase in cumulative dose was associated with significantly worse CBM (OR per 100 mg/m², 1.34; 95% CI, 1.14 to 1.58; P < .001).

Increasing CBM score was significantly associated with worse self-reported health. Compared with testicular cancer survivors with a score of 0, the risk of worse self-reported health among those scored as very low, low, medium, high, or very high/severe was 1.94 (95% CI, 1.08 to 3.48), 2.82 (95% CI, 1.72 to 4.62), 5.91 (95% CI, 3.56 to 9.81), 10.90 (95% CI, 6.28 to 18.93), and 34.17 (95% CI, 16.54 to 70.62), respectively.

Results from both variable clustering methods converged in the analysis of AHOs to yield six major groups of signs/symptoms (χ² for model fit, P < .001), with pairwise ORs for given clusters as follows: hearing loss/damage, tinnitus (OR, 16.3); metabolic disorders (diabetes, hypertension, hyperlipidemia; OR, 9.8); neuropathy and related conditions (sensory neuropathy, autonomic neuropathy, pain, Raynaud phenomenon; OR, 5.5); cardiovascular disease (CVD) and related conditions (coronary artery disease, stroke, kidney disease, peripheral artery disease, thromboembolism, obesity; OR, 5.0); erectile dysfunction, thyroid disease (OR, 4.2); and hypogonadism, depression/anxiety (OR, 2.8). Clusters hearing loss/damage, tinnitus and neuropathy and related conditions, although distinct, were strongly correlated (r = 0.658; P < .001), as were clusters erectile dysfunction, thyroid disease and hypogonadism, depression/anxiety (r = 0.914; P < .001).

© 2018 by American Society of Clinical Oncology

jco.org
Because testicular cancer occurs largely in white males, data on Asian patients are sparse. Decreased risks of a higher CBM score in Asian versus white testicular cancer survivors largely reflect the lower occurrence of high-severity grades in Asians for most AHOs. These include known treatment-related toxicities, which possibly reflects differences in drug absorption, distribution, metabolism, and excretion, among others. Although we adjusted for sociodemographic and health behavior factors, other unmeasured influences may have accounted for this finding, which remain to be confirmed.

Although the CBM score was slightly higher after VIP × 4 than after BEP × 4, the difference was not significant (P = .36). Both are standard chemotherapy regimens for intermediate- and poor-risk disease6,6 and show equivalent survival. Although an early, randomized trial showed that VIP × 4 is associated with greater acute toxicity than BEP × 4,30 no study has subsequently addressed long-term AHOs as we have done. Additional follow-up, as planned for this cohort, is required to quantify further the CBM associated with each regimen. CBM also was similar for BEP × 3 versus EP × 4, the two commonly applied regimens for good-risk disease. In a curable disease such as testicular cancer with a long life expectancy and equivalent therapy options, the availability of AHO data becomes increasingly important to inform treatment decisions.8

The striking association between CBM score and self-reported health indicates that the score captures outcomes that affect patients’ self-perception of health. The risk of worse self-reported health among patients with very high/severe CBM scores rose to > 30-fold compared with those with a score of 0. These results also underscore the need to assess outcomes that affect self-perceived health because these can guide the development of survivorship care strategies that patients value.

To our knowledge, we have performed the first variable-based factor analysis of AHOs in long-term cancer survivors. Prior analyses have largely been conducted in patients either during cancer treatment,31,32 shortly after therapy completion,33,34 or during palliative/hospice care.35 Only Kim et al36 evaluated patients who were either 2 to 5 years (n = 66) or > 5 years (n = 56) postcancer diagnosis, although some were still undergoing treatment. Factor analysis provides insights into groups of conditions that may co-occur and perhaps share etiology. For example, hearing loss and tinnitus reflect known cisplatin-associated damage to the auditory system.10,37 Associations between neuropathy and Raynaud phenomenon have been reported in individuals with no chemotherapy exposure,38,39 although the biologic basis is incompletely understood, and co-occurrence could reflect symptom cross-reporting. Pain is frequently associated with chemotherapy-induced peripheral neuropathy, with no agents currently available for prevention or treatment.40

The cluster of hyperlipidemia, hypertension, and diabetes present at the time of clinical evaluation represents components of the metabolic syndrome.41 consistent with studies that report increased metabolic syndrome risk among European testicular cancer survivors.42-45 The co-occurrence of AHOs related to CVD supports European investigations who showed a 1.4-fold to seven-fold higher CVD risk among cisplatin-treated testicular cancer survivors versus either the general population or patients managed with surgery alone.26,46-49 Presentation with one or more of these AHOs suggests closer screening for other cluster-related conditions that could signal an elevated risk for CVD morbidity and mortality.7 Hypogonadism and depression, respectively, represent a biologic consequence of testicular cancer treatment50,51 and possibly associated psychological outcomes. A potential relationship between hypogonadism and depression in the general population has been recognized, with other symptoms including muscle weakness and loss of energy.32-36

An association of erectile dysfunction and thyroid disease has not been previously shown in testicular cancer survivors as it has in noncancer populations.7-42 Of 39 testicular cancer survivors with thyroid disease, 33 and six reported hypothyroidism and hyperthyroidism, respectively. Although associations of hypothyroidism57,62,63 and hyperthyroidism57,81-83 with erectile dysfunction were observed in several studies in noncancer populations, a relationship with hypothyroidism was not confirmed in the largest investigation to date,61 possibly because of the low prevalence, and requires additional investigation.

The strong association between vigorous physical activity and lower CBM score as well as with a reduced absolute number of AHOs in prior analyses2 can inform future intervention strategies. Studies of childhood cancer survivors have shown that exercise reduces the risk of late effects, such as CVD,64 and the same likely applies to testicular cancer survivors. The apparent inverse relation between increased risk of a high CBM score and follow-up time is due to the disproportionate contribution of early-onset toxicities (eg, neuropathy, tinnitus), which are more prevalent than later-onset toxicities (eg, hypercholesterolemia, hypertension), which reflects the relatively short median follow-up time and young cohort age.

A major strength of this study is the estimation of both the number and the severity of AHOs in a large testicular cancer survivorship cohort treated primarily with EP × 4, BEP × 3, BEP × 4, or VIP × 4 chemotherapy regimens. Other strengths include the high participation rate (93%), detailed medical chart abstraction, and estimation of risk without the confounding effect of radiotherapy. An inherent limitation to all cross-sectional studies is the inability to assess causality between clinical, sociodemographic, and health behavior characteristics and CBM score. AHOs largely were self-reported without baseline data, similar to previous testicular cancer survivorship studies.21,23,65 As in Geenen et al,15 a limitation is that we could not compare the CBM score with that of a normative population given the unavailability of data. Equivalent weight was assigned to all AHOs, whereas testicular cancer survivorship may weigh these differently; some AHOs capture symptoms that can markedly affect survivors (eg, neuropathy), whereas others encompass conditions treated by medications that may be less bothersome (eg, hypertension). Additional studies are needed to investigate the effect of specific AHOs on health-related quality of life in this understudied population.

In conclusion, at a median follow-up of only 4.2 years, approximately one in five testicular cancer survivors have a CBM score of high, very high, or severe. Of note, no difference in CBM score was observed among survivors who received BEP × 4 versus VIP × 4 chemotherapy or among those given EP × 4 versus BEP × 3, although the long-term monitoring of patients is important. The value of variable clustering analysis in revealing the co-occurrence of AHOs is underscored by our findings and should be considered for other groups of long-term cancer survivors to highlight potential areas of research into the mechanistic bases of toxicities. Ongoing genetic research in the current cohort has already begun to characterize biologic pathways that underlie cisplatin-related
toxicities, and that can identify new research opportunities aimed at developing agents to prevent, mitigate, and treat adverse sequelae not only among testicular cancer survivors but also among other survivors after cisplatin-based chemotherapy. In the interim, if confirmed, the current results could inform survivorship care strategies and assist health care providers in identifying conditions, or groups of conditions, for which to screen, counsel, and treat testicular cancer survivors.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

REFERENCES

34. Skerman HM, Yates PM, Battistutta D: Cancer-related symptom clusters for symptom management in outpatients after commencing adjuvant chemotherapy, at 6 months, and 12 months. Support Care Cancer 20:95-105, 2012

AUTHOR CONTRIBUTIONS

Conception and design: Sarah L. Kerns, Chunkit Fung, Deepak M. Sahasrabudhe, Sophie D. Fossa, Lawrence H. Einhorn, Lois B. Travis
Financial support: Lois B. Travis
Administrative support: Lois B. Travis
Collection and assembly of data: Chunkit Fung, Darren R. Feldman, Ryan Cook, Lois B. Travis
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors
Kerns et al

Affiliations

Sarah L. Kerns, Chunkit Fung, AnnaLynn M. Williams, and Deepak M. Sahasrabudhe, University of Rochester Medical Center, Rochester; Darren R. Feldman, Memorial Sloan Kettering Cancer Center, New York, NY; Patrick O. Monahan, Shirin Ardeshir-Rouhani-Fard, Mohammad I. Abu Zaid, Timothy E. Stump, Ryan Cook, Lawrence H. Einhorn, and Lois B. Travis, Indiana University, Indianapolis, IN; Howard D. Sesso, Brigham and Women’s Hospital; Claire Beard, Dana-Farber Cancer Institute, Boston, MA; Robert B. Sloane, The Royal Marsden Hospital, London, United Kingdom; Christian Kollmannsberger, University of British Columbia, Vancouver, British Columbia, Canada; David J. Vaughn, University of Pennsylvania, Philadelphia, PA; Robert A. Huddart, The Royal Marsden Hospital, London, United Kingdom; Jeri Kim, MD Anderson Cancer Center, Houston, TX; and Sophie D. Fossa, Oslo University Hospital, Oslo, Norway.

Support

Supported by the National Cancer Institute (1R01 CA157823 to L.B.T. and K07 CA187546 to S.L.K.).

Prior Presentation

Authors’ Disclosures of Potential Conflicts of Interest

Cumulative Burden of Morbidity Among Testicular Cancer Survivors After Standard Cisplatin-Based Chemotherapy: A Multi-Institutional Study

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Sarah L. Kerns
No relationship to disclose

Chunkit Fung
Stock or Other Ownership: GlaxoSmithKline
Consulting or Advisory Role: Novartis, Exelixis
Research Funding: Astellas Pharma (Inst)

Patrick O. Monahan
Stock or Other Ownership: RestUp

Shirin Ardeshir-Rouhani-Fard
Employment: Eli Lilly (I)

Mohammad I. Abu Zaid
No relationship to disclose

AnnaLynn M. Williams
No relationship to disclose

Timothy E. Stump
No relationship to disclose

Howard D. Sesso
No relationship to disclose

Darren R. Feldman
Research Funding: Novartis, Seattle Genetics

Robert J. Hamilton
Honouraria: Janssen Pharmaceuticals, AbbVie, Astellas Pharma
Consulting or Advisory Role: Janssen Pharmaceuticals, Astellas Pharma, AbbVie
Travel, Accommodations, Expenses: Janssen Pharmaceuticals

David J. Vaughn
Research Funding: Merck Sharp & Dohme, Roche, Genentech

Clair Beard
No relationship to disclose

Robert A. Huddart
Leadership: Cancer Clinic London
Honouraria: Janssen Pharmaceuticals
Consulting or Advisory Role: Bristol-Myers Squibb, Roche, Merck Sharp & Dohme
Speakers’ Bureau: Pierre Fabre, AstraZeneca
Research Funding: Ipsen, Active Biotech, Merck Sharp & Dohme (Inst), Roche (Inst), Bristol-Myers Squibb (Inst)
Travel, Accommodations, Expenses: Janssen Pharmaceuticals, Roche, Genentech, MSD

Jeri Kim
Employment: Merck
Stock or Other Ownership: Merck

Christian Kollmannsberger
Honouraria: Pfizer, Novartis, Bristol-Myers Squibb
Consulting or Advisory Role: Pfizer, Novartis, Seattle Genetics, Bristol-Myers Squibb, Astellas Pharma, Ipsen, Eisai
Travel, Accommodations, Expenses: Pfizer, Novartis

Deepak M. Sahasrabudhe
Consulting or Advisory Role: AXON Communications
Travel, Accommodations, Expenses: AXON Communications

Ryan Cook
No relationship to disclose

Sophie D. Fossa
No relationship to disclose

Lawrence H. Einhorn
No relationship to disclose

Lois B. Travis
No relationship to disclose
Members of the Platinum Study Group are Howard D. Sesso (Brigham and Women's Hospital); Clair Beard and Stephanie Curreri (Dana-Farber Cancer Institute); Lois B. Travis, Lawrence H. Einhorn, Mary Jacqueline Brames, and Kelli Norton (Indiana University); Darren R. Feldman, Erin Jacobsen, and Deborah Silber (Memorial Sloan Kettering Cancer Center); Robert J. Hamilton and Lynn Anson-Cartwright (Princess Margaret Hospital); Nancy J. Cox and M. Eileen Dolan (University of Chicago); Robert A. Huddart (The Royal Marsden Hospital); David J. Vaughn, Linda Jacobs, Sarah Lena Panzer, and Donna Pucci (University of Pennsylvania); Debbie Baker, Cindy Casaceli, Chunkit Fung, Eileen Johnson, and Deepak M. Sahasrabudhe (University of Rochester); and Robert D. Frisina (University of South Florida). Members of the Platinum Study Group Advisory Committee are George Bosl (Memorial Sloan Kettering Cancer Center), Sophie D. Fossa (Norwegian Radium Hospital), Mary Gospodarowicz (Princess Margaret Hospital), Leslie L. Robison (St Jude Children's Research Hospital), and Steven E. Lipshultz (Wayne State University).

Methods

Study Population

All participants received first-line cisplatin-based chemotherapy for either initial germ cell tumor or recurrence after active surveillance. Participants could not have received subsequent salvage chemotherapy, radiotherapy, or antecedent chemotherapy for another primary cancer. All participants were disease free at the time of clinical assessment.

Data Collection From Medical Records and Clinical Evaluation

Study personnel were trained in person to abstract data using a standard protocol and forms modified from previous investigations. To minimize recall bias, we applied strict definitions to assessment times. Validated questionnaires that queried symptoms over the past 4 weeks were selected, and for those adverse health outcomes (AHOs) for which Common Terminology Criteria for Adverse Events (version 4.03) grading took into account prescription medication use (ie, peripheral sensory neuropathy, pain, kidney disease, hypercholesterolemia, hypertriglyceridemia, hypertension, diabetes, peripheral artery disease, thromboembolic event, thyroid disease, anxiety/depression, erectile dysfunction, hypogonadism), we only took into account current prescription medication use (with usage for > 1 month), with data provided by the patient at the time of clinical assessment. For sociodemographic characteristics, we assessed current marital and employment status. Self-reported race and education level were determined at the time of enrollment. For health behaviors, we used standardized questions drawn from validated survey tools to assess current or former smoking status, alcohol consumption, and physical activity over the past year.

For health behaviors, we used validated questionnaires to assess current or former smoking status, alcohol consumption, and physical activity over the past year. Exercise was assessed with a validated questionnaire that asked participants to report their average time per week (over the past year) spent in each of nine recreational activities: walking or hiking (including walking to work); jogging (> 10 min/mile); running (≤ 10 min/mile); bicycling (including stationary bike); aerobic exercise/dance or exercise machines; lower-intensity exercise, yoga, stretching, or toning; tennis, squash, or racquetball; lap swimming; and weight lifting or strength training. Each physical activity was assigned a metabolic equivalent task (MET) value, which is a commonly used metric for describing the relative energy expenditure of a specific type of physical activity (1 MET = 1 kcal/kg/h or the energy cost of sitting quietly). The MET values for each activity were then used to calculate MET-hours per week for each participant, and these were grouped into categories of vigorous or nonvigorous physical activity according to standard definitions.

Measurement of AHOs

Symptoms related to a single underlying condition were grouped to avoid overcounting (eg, coronary artery disease was defined as a single AHO by combining coronary artery disease, angina, heart attack or myocardial infarction, and related procedures). For 12 AHOs in which current prescription medication use determined grade, medications were only considered if participants started use during or after cancer treatment.
Statistical Analysis

<table>
<thead>
<tr>
<th>Table A1. AHOs That Comprise the Cumulative Burden of Morbidity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHO and Platinum Study Items Used to Assign Severity Grade</td>
</tr>
<tr>
<td>AHO</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
</tr>
<tr>
<td>Tingling fingers/hands or toes/feet*</td>
</tr>
<tr>
<td>Numbness in fingers/hands or toes/feet*</td>
</tr>
<tr>
<td>Shooting or burning pain in fingers/hands or toes/feet*</td>
</tr>
<tr>
<td>Difficulty with distinguishing between hot and cold water*</td>
</tr>
<tr>
<td>Problems with standing/walking because of difficulty feeling ground under feet*</td>
</tr>
<tr>
<td>Pain and tingling in fingers/hands or toes/feet</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>Autonomic neuropathy</td>
</tr>
<tr>
<td>Dizzy when standing up from a sitting or lying position*</td>
</tr>
<tr>
<td>Hearing loss/damage</td>
</tr>
<tr>
<td>Difficulty hearing*</td>
</tr>
<tr>
<td>Reduced hearing†</td>
</tr>
<tr>
<td>Hearing loss that requires a hearing aid§</td>
</tr>
<tr>
<td>Complete deafness§</td>
</tr>
<tr>
<td>Persistent dizziness or vertigo§</td>
</tr>
<tr>
<td>Tinnitus</td>
</tr>
<tr>
<td>Ringing in ears†</td>
</tr>
<tr>
<td>Raynaud phenomenon</td>
</tr>
<tr>
<td>White, cold fingers/hands or toes/feet when it is cold†</td>
</tr>
<tr>
<td>Pain</td>
</tr>
<tr>
<td>How much pain interferes in normal work (including work outside the home, inside the house, in the yard)†</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>Kidney disease</td>
</tr>
<tr>
<td>Told by physician of condition</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
</tr>
<tr>
<td>Told by physician of condition</td>
</tr>
<tr>
<td>Prescription medication use for high total cholesterol or low HDL cholesterol‡</td>
</tr>
<tr>
<td>Hyperglycemia</td>
</tr>
<tr>
<td>Told by physician of condition</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Told by physician of condition</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Told by physician of condition</td>
</tr>
<tr>
<td>Prescription medication use†</td>
</tr>
<tr>
<td>(continued on following page)</td>
</tr>
</tbody>
</table>
Table A1. AHOs That Comprise the Cumulative Burden of Morbidity Score (continued)

<table>
<thead>
<tr>
<th>AHO and Platinum Study Items Used to Assign Severity Grade</th>
<th>Grade</th>
<th>Grade</th>
<th>Grade</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery disease</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Have angina or coronary artery disease</td>
<td>NA</td>
<td>Have angina or coronary artery disease and either medication use, angioplasty, or stent placement</td>
<td>Had heart attack or myocardial infarction or have had coronary bypass surgery</td>
<td>NA</td>
</tr>
<tr>
<td>Told by physician of condition</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Told by physician of condition</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>Have condition and had carotid artery surgery</td>
</tr>
<tr>
<td>Told by physician of condition</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Told by physician of condition</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Told by physician of condition</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>Have condition and had carotid artery surgery</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Pain in calf when walking (intermittent claudication)</td>
<td>NA</td>
<td>Have condition and medication use</td>
<td>Have condition and had peripheral artery surgery</td>
<td>NA</td>
</tr>
<tr>
<td>Had relevant procedure</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Prescription medication use†</td>
<td>NA</td>
<td>Have deep vein thrombosis</td>
<td>Have pulmonary embolism or medication use</td>
<td>NA</td>
</tr>
<tr>
<td>Obesity, BMI, kg/m²</td>
<td>NA</td>
<td>25-29</td>
<td>30-39</td>
<td>≥ 40</td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Have condition</td>
<td>NA</td>
<td>Have condition and medication use</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Prescription medication use†</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anxiety/depression</td>
<td>NA</td>
<td>Medication use for condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Prescription medication use†</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>NA</td>
<td>A little</td>
<td>Quite a bit or very much or medication use</td>
<td>NA</td>
</tr>
<tr>
<td>Prescription medication use†</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hypogonadism</td>
<td>NA</td>
<td>Medication use for condition</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Prescription medication use†</td>
<td>NA</td>
<td>Have condition</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NOTE: For conditions that are based on more than one question, the severity grade was assigned according to the response that reported the greatest or most severe symptom.

Abbreviations: AHO, adverse health outcome; BMI, body mass index; HDL, high-density lipoprotein; NA, not applicable (data needed to assign grade were not captured).

*Assessed with the European Organisation for Research and Treatment of Cancer Chemotherapy-Induced Peripheral Neuropathy 20-item quality-of-life questionnaire on the basis of symptoms experienced over the past 4 weeks. For each item, participants were asked whether the symptom started before, during, or after chemotherapy. If participants responded that the symptoms started before chemotherapy, those responses were not considered when assigning severity grade.

†Assessed with the Scale for Chemotherapy-Induced Long-Term Neurotoxicity questionnaire on the basis of symptoms experienced over the past 4 weeks. For each item, participants were asked whether the symptom started before, during, or after chemotherapy. If participants responded that the symptom started before chemotherapy, those responses were not considered when assigning severity grade.

‡Prescription medications taken for at least the past 4 weeks were only used to assign grade if the participant reported that the indication was for the given AHO and that the medication was started during or after chemotherapy.

§Item is from the Hearing Handicap Inventory by Ventry and Weinstein and assessed symptoms at the time of clinical evaluation. For each item, participants were asked to report the age (in years) at first occurrence. If onset of symptoms was before their age of germ cell tumor diagnosis, those responses were not considered when assigning severity grade.

¶BMI is based on physical examination performed at time of clinical assessment.
Table A2. Definition of the Cumulative Burden of Morbidity Score on the Basis of Number and Severity of Individual Adverse Health Outcomes

<table>
<thead>
<tr>
<th>Grade</th>
<th>None</th>
<th>Very Low</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Very High</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE. Methods adapted from Geenen et al.15 Modifications include division of the low category into very low and low and division of the high category into high and very high to reflect the granularity of data collected in the current study.

Table A3. Association Among Clinical, Sociodemographic, and Health Behavior Factors and Cumulative Burden of Morbidity Score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cumulative Burden of Morbidity Score, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>No. of participants</td>
<td>65</td>
</tr>
<tr>
<td>Mean age at evaluation, years (SD)</td>
<td>32 (5.5)</td>
</tr>
<tr>
<td>Mean age at diagnosis, years (SD)</td>
<td>27 (7.3)</td>
</tr>
<tr>
<td>Mean years since treatment (SD)</td>
<td>4.5 (4.2)</td>
</tr>
<tr>
<td>Race</td>
<td>.002</td>
</tr>
<tr>
<td>White</td>
<td>49 (4.7)</td>
</tr>
<tr>
<td>African American</td>
<td>0</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (11.9)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (8.8)</td>
</tr>
<tr>
<td>Education</td>
<td><.001</td>
</tr>
<tr>
<td>High school education or less</td>
<td>4 (2.9)</td>
</tr>
<tr>
<td>Post-high school training or some college</td>
<td>12 (4.2)</td>
</tr>
<tr>
<td>College or postcollege graduate</td>
<td>49 (6.3)</td>
</tr>
<tr>
<td>Marital status</td>
<td>.016</td>
</tr>
<tr>
<td>Single/never married</td>
<td>26 (6.7)</td>
</tr>
<tr>
<td>Married/divorced as married</td>
<td>37 (5.0)</td>
</tr>
<tr>
<td>Divorced/separated</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>Current employment status</td>
<td><.001</td>
</tr>
<tr>
<td>Employed</td>
<td>57 (5.3)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>5 (8.7)</td>
</tr>
<tr>
<td>Retired</td>
<td>0</td>
</tr>
<tr>
<td>Disability</td>
<td>0</td>
</tr>
<tr>
<td>Smoking status</td>
<td>.036</td>
</tr>
<tr>
<td>Never</td>
<td>48 (6.9)</td>
</tr>
<tr>
<td>Former</td>
<td>14 (3.6)</td>
</tr>
<tr>
<td>Current</td>
<td>3 (2.8)</td>
</tr>
<tr>
<td>No. of alcoholic drinks in past year</td>
<td>.001</td>
</tr>
<tr>
<td>Rarely/never</td>
<td>11 (4.6)</td>
</tr>
<tr>
<td>1-3/mo</td>
<td>13 (7.2)</td>
</tr>
<tr>
<td>1-6/wk</td>
<td>33 (5.8)</td>
</tr>
<tr>
<td>≥ 1/d</td>
<td>7 (3.2)</td>
</tr>
<tr>
<td>Engage in vigorous physical activity</td>
<td><.001</td>
</tr>
<tr>
<td>No</td>
<td>14 (3.7)</td>
</tr>
<tr>
<td>Yes</td>
<td>51 (8.1)</td>
</tr>
<tr>
<td>Retroperitoneal lymph node dissection</td>
<td>.110</td>
</tr>
<tr>
<td>No</td>
<td>39 (6.1)</td>
</tr>
<tr>
<td>Yes</td>
<td>26 (4.6)</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>.580</td>
</tr>
<tr>
<td>No</td>
<td>25 (5.2)</td>
</tr>
<tr>
<td>Yes</td>
<td>40 (5.5)</td>
</tr>
</tbody>
</table>

(continued on following page)
Table A3. Association Among Clinical, Sociodemographic, and Health Behavior Factors and Cumulative Burden of Morbidity Score (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Very Low</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Very High/Severe</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of chemotherapy(^k) × No. cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP (× 4)</td>
<td>15 (4.3)</td>
<td>35 (9.9)</td>
<td>146 (41.4)</td>
<td>99 (28.1)</td>
<td>48 (13.6)</td>
<td>10 (2.8)</td>
</tr>
<tr>
<td>BEP (× 3)</td>
<td>31 (6.7)</td>
<td>40 (8.7)</td>
<td>169 (36.7)</td>
<td>138 (30.0)</td>
<td>59 (12.8)</td>
<td>23 (5.0)</td>
</tr>
<tr>
<td>VIP (× 4)</td>
<td>9 (4.1)</td>
<td>16 (7.2)</td>
<td>88 (36.0)</td>
<td>66 (29.7)</td>
<td>43 (19.4)</td>
<td>8 (3.6)</td>
</tr>
</tbody>
</table>

Abbreviations: BEP, bleomycin, etoposide, and cisplatin; EP, etoposide plus cisplatin; SD, standard deviation; VIP, etoposide, ifosfamide, and cisplatin.

\(^a\)Categories were collapsed because of sparse data. Among the 47 participants, 46 had a cumulative burden of morbidity score of very high and one had a score of severe.

\(^b\)P value derives from analysis of log-transformed values as a result of unequal variance between groups. Means and SDs are from untransformed values.

\(^c\)Data on race were not available for 35 participants.

\(^d\)Data on education level were not available for three participants.

\(^e\)Data on marital status were not available for 15 participants.

\(^f\)Data on employment status were not available for 19 participants.

\(^g\)Data on smoking status were not available for 19 participants.

\(^h\)Data on alcohol consumption were not available for nine participants.

\(^i\)Data on physical activity were not available for one participant.

\(^j\)Data on retroperitoneal lymph node dissection were not available for 13 participants.

\(^k\)Other chemotherapy regimens not included in the comparisons are EP other than four cycles (n = 28), BEP other than three or four cycles (n = 28), VIP other than four cycles (n = 12), and other platinum-based regimens (n = 72).
Table A4 Summary of US Studies of Testicular Cancer Survivors

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>First Author and Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fung2</td>
</tr>
<tr>
<td></td>
<td>Reilley23a</td>
</tr>
<tr>
<td></td>
<td>Kim21</td>
</tr>
<tr>
<td></td>
<td>Oh22</td>
</tr>
<tr>
<td></td>
<td>Shinn24a</td>
</tr>
<tr>
<td></td>
<td>Hashibe20b</td>
</tr>
<tr>
<td>No. of patients</td>
<td>9522</td>
</tr>
<tr>
<td>Cohort source</td>
<td>Eight cancer centers in United States and Canada</td>
</tr>
<tr>
<td>Calendar years of testicular cancer diagnosis</td>
<td>1979-2015</td>
</tr>
</tbody>
</table>
| Age at testicular cancer diagnosis
 | Median, 31; range, 15-53 |
| Ethnicity, % | White 86 | |
| | Other 14 |
| | Unknown 0 |
| Type of therapy, % | Chemotherapy 100 |
| | Radiation 0 |
| | Surgery 100 |
| | Other treatment 0 |
| | Source of therapy data | Medical record |
| | Duration of follow-up, years | Mean, 4.3; range, 1-29.9 |
| | Age at evaluation, years | Median, 37; range, 19-68 |
| | BMI (kg/m²) | 73.3 |
| | Waist circumference, cm | Median, 94; range, 57-190 |
| Prevalence of health behaviors, % | Current smoker 8.3 |
| | Physical activity 95.6 |
| | Vigorous level 69.0 |
| | Heavy drinking 11.4 |
| Prevalence of AHOS, % | Hypertension 11.6 |
| | Hyperlipidemia 10.5 |
| | Coronary artery disease 0.7 |
| | Cerebrovascular disease 1.0 |
| | Peripheral vascular disease 3.0 |

(continued on following page)
Table A4. Summary of US Studies of Testicular Cancer Survivors (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Testicular Cancer</th>
<th>Testicular Cancer</th>
<th>Testicular Cancer</th>
<th>Testicular Cancer, Treated With Platinum</th>
<th>Testicular Cancer, Not Treated With Platinum</th>
<th>Testicular Cancer</th>
<th>Testicular Cancer</th>
<th>Men Without Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboembolic disease</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.2/1,000 PY</td>
<td>1.0/1,000 PY</td>
</tr>
<tr>
<td>Raynaud phenomenon</td>
<td>18.7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing issues and/or tinnitus</td>
<td>47.9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.6/1,000 PY</td>
<td>0.2/1,000 PY</td>
</tr>
<tr>
<td>CIPN</td>
<td>27.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4.4/1,000 PY</td>
<td>3.0/1,000 PY</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal disease</td>
<td>2.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.4/1000 PY</td>
<td>1.6/1000 PY</td>
</tr>
<tr>
<td>Diabetes on medication</td>
<td>3.1</td>
<td>NA</td>
<td>NA</td>
<td>5.8</td>
<td>0</td>
<td>NA</td>
<td>3.3/1,000 PY</td>
<td>4.0/1,000 PY</td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>2.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hypogonadism on medication</td>
<td>9.9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>12.1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CIPN, chemotherapy-induced peripheral neuropathy; NA, not available; PY, person-year; SD, standard deviation; STEED, Servicemen’s Testicular Tumor Environmental and Endocrine Determinants.

aNo control group was included.
bStatistically significant hazards ratios (HRs) that compared results in patients with testicular cancer versus men without cancer were observed for hyperlipidemia (HR, 1.70; 95% CI, 1.19 to 2.41). Non-significant HRs were observed for coronary artery disease (0.93), cerebrovascular disease (0.67), diabetes (0.63), hypertension (0.99), hyperglycemia (1.0), obesity (0.93), peripheral neuropathy (2.29), hearing loss (1.79), thromboembolic disease (pulmonary embolism [1.3]), renal failure (1.0), and dyslipidemia (1.14).
cMen without cancer were randomly selected from patients in the Utah Population Database for whom medical records were available at the University of Utah Health Sciences Center data warehouse or the Intermountain system. Each patient with testicular cancer was matched to four to five men without cancer on birth year, birth region, and date of last residence in Utah.
dOf 952 patients, 842 (88.5%) had testicular germ cell tumors (GCTs), whereas 109 (11.4%) had GCTs at other sites. For one (0.1%) patient, GCT site was unknown. All patients in Fung et al also are included in the current study.
eThe STEED study had a response rate of 47.6%. Men who never had a diagnosis of testicular GCT and had a blood serum sample in the Department of Defense Serum Repository were eligible for participation in the control group.
fMean value.
gSD was not available.
hMean age at reference date.
iBecause treatment groups in Reilley et al, Kim et al, Oh et al, Shinn et al, and Hashibe et al did not consist of mutually exclusive categories, patients may have had more than one type of treatment. Patients with testicular GCTs in Fung et al received platinum-based chemotherapy after surgical management.
jAll testicular cancer survivors received cisplatin-based chemotherapy.
kAmong testicular cancer survivors administered chemotherapy, 82.5% received cisplatin-based chemotherapy, although the number who received cisplatin-versus carboplatin-based chemotherapy was not provided. The remaining patients (17.5%) received non-platinum-based chemotherapy.
lSurgery and chemotherapy.
mAmong all 143 survivors, 30 (21%) had received radiation.
nSurgery and radiotherapy.
oAmong all 143 survivors, 138 (96.5%) had had orchiectomy.
pSurgery only.
qThese patients received other treatments, including surgery, radiation, and chemotherapy.
rPatients received other treatments, including radiotherapy only; chemotherapy only; or radiation, chemotherapy, and orchietomy, or their treatments were unknown.
sDuration of follow-up since completion of testicular cancer therapy.
tDuration of follow-up since testicular cancer diagnosis.
uMean or median age at evaluation was not provided, but the study reported the percentage of testicular cancer survivors in the following age ranges: 18 to 29 years, 3%; 30 to 39 years, 36%; 40 to 49 years, 41%; and 50 years, 20.5%.
vMean or median age at evaluation was not provided, but the study reported the percentage of control group participants in the following age ranges: 18 to 29 years, 3.4%; 30 to 39 years, 32.5%; 40 to 49 years, 44.1%; and 50 years, 19.9%.
wMean or median age at the end of follow-up was not provided, but the study reported the percentage of patients in the following age ranges: 22 to 35 years, 18.2%; 35 to 44 years, 33.8%; 45 to 54 years, 31.7%; and 55 to 69 years, 16.3%.
Mean or median age was not provided, but the study reported the percentage of control group participants in the following age ranges: 22 to 35 years, 16%; 35 to 44 years, 35.1%; 45 to 54 years, 31.7%; and 55 to 69 years, 17.2%.

Among 952 testicular cancer survivors, 42.4% were overweight (BMI, 25 to 29.9 kg/m²), and 30.9% were obese (BMI, >30 kg/m²).

Among 246 testicular cancer survivors, 47.2% were overweight (BMI, 25 to 29.9 kg/m²), and 32.1% were obese (BMI, >30 kg/m²).

Among 236 control group participants, 42.8% were overweight (BMI, 25 to 29.9 kg/m²), and 37.7% were obese (BMI, >30 kg/m²).

BMI at baseline. Among 785 testicular cancer survivors, 44.3% were overweight (BMI, 25 to 29.9 kg/m²), and 18% were obese (BMI, >30 kg/m²).

Among 3,323 men without cancer, 43.5% were overweight (BMI, 25 to 29.9 kg/m²), and 20.3% were obese (BMI, >30 kg/m²).

For four studies that included testicular cancer survivors from multiple treatment groups, health behaviors and outcomes were not stratified by type of therapy.

Vigorous activity was defined as ≥6 metabolic equivalent tasks and moderate activity as 3 to 5.9 metabolic equivalent tasks. The authors used the Rapid Assessment of Physical Activity, which assesses aerobic activity and strength and flexibility. The definitions provided by Oh22 are as follows: hypertension, prior diagnosis or use of antihypertensive medication; hypercholesterolemia, prior diagnosis or creatinine level ≥1.5 mg/dL. No diagnostic criteria were provided for Raynaud phenomenon.

Heavy drinking was defined as two or more alcoholic drinks daily. Reilly et al23 and Shi et al24 defined heavy drinking as ≥5 drinks at one time in past month.

The incidence rate of dyslipidemia (defined as high triglycerides, high cholesterol, and low high-density lipoprotein) was 9.7 and 8.7/1,000 PY for the case and control groups, respectively (HR, 1.14; 95% CI, 0.86 to 1.49). No definitions were provided for hypercholesterolemia, hypertriglyceridemia, or dyslipidemia.